08 de abril de 2017
08.04.2017
Matemáticas

El problema matemático del millón de dolares

La hipótesis de Riemann, en vías de resolverse más de 100 años después, tiene un suculento premio

08.04.2017 | 10:46
Un millón de dolares para quien lo resuelva.

Uno de los mayores problemas en Matemáticas: la hipótesis de Riemann, puede ser más fácil de resolver gracias a la investigación sobre las soluciones a la conocida como función zeta de Rieman. Si los resultados pueden ser verificados rigurosamente, entonces finalmente se probaría la hipótesis de Riemann, que vale un premio Millenium de un millón de dólares por parte del Instituto Clay de Matemáticas.

Si bien la hipótesis de Riemann se remonta a 1859, durante los últimos 100 años matemáticos tratan de encontrar una función de operador como la que ha sido descubierta en el nuevo trabajo, ya que se considera un paso clave en la prueba.

"Hasta donde sabemos, esta es la primera vez que un explícito --y tal vez sorprendentemente fácil-- operador ha sido identificado cuyos valores propios ('soluciones' en la terminología de la matriz) se corresponden exactamente con los ceros no triviales de la función zeta de Riemann", dijo a Phys.org Dorje Brody, un físico matemático en Brunel University de Londres y coautor del nuevo estudio.

Lo que aún queda por demostrar es el segundo paso clave: que todos los valores propios son números reales y no imaginarios. Si el trabajo futuro puede probar esto, entonces finalmente se probaría la hipótesis de Riemann.

Brody y sus coautores, los físicos matemáticos Carl Bender, de la Universidad de Washington en St. Louis, y Markus Müller de la Universidad de Ontario Occidental, han publicado su trabajo en un número reciente de la revista Physical Review Letters.

Problema centenario

La hipótesis de Riemann mantiene una atracción tan fuerte porque está estrechamente conectada con la teoría de números y, en particular, con los números primos. En su artículo de 1859, el matemático alemán Bernhard Riemann determinó la distribución de los números primos, o más precisamente, el problema "dado un entero N, ¿cuántos números primos hay que sean más pequeños que N?"

Riemann conjeturó que la distribución de los números primos menores que N está relacionada con los ceros no triviales de lo que ahora se llama la función zeta de Riemann. (Los ceros son las soluciones, o los valores de s que hacen la función igual a cero. Aunque era fácil para los matemáticos ver que hay ceros cada vez que s es un número par negativo, esos ceros son considerados triviales y no son parte interesante de la función).

La hipótesis de Riemann fue que todos los ceros no triviales se unen a lo largo de una única línea vertical en el plano complejo, lo que significa que su componente real es siempre 1/2, mientras que su componente imaginario varía a medida que avanza hacia arriba y abajo de la línea.

Durante los últimos 150 años, los matemáticos han encontrado literalmente miles de millones de ceros no triviales, y todos ellos tienen un componente real de 1/2, igual que pensó Riemann. En general, se creía que la hipótesis de Riemann era cierta, y mucho trabajo ha sido hecho en base a esta suposición. Pero a pesar de los esfuerzos intensivos, la hipótesis de Riemann, que todos los infinitos números cero se enlazan en esta misma línea, aún no se ha demostrado.

Compartir en Twitter
Compartir en Facebook

Cultura

La escritora Pilar Urbano.
Pilar Urbano: "Castro pensaba que la Infanta era la eminencia gris de Nóos"

Pilar Urbano: "Castro pensaba que la Infanta era la eminencia gris de Nóos"

La escritora publica un libro donde describe el relato del juez Castro tras horas de conversación...

Muere David Cassidy, ídolo adolescente de los 70

Muere David Cassidy, ídolo adolescente de los 70

El actor y músico fue el protagonista de la famosa serie 'Mamá y sus increíbles hijos'

Los grafitis más famosos de Banksy por el mundo

Los grafitis más famosos de Banksy por el mundo

El artista anónimo de Bristol remueve conciencias gracias a sus críticas a la sociedad actual

Fonsi reanuda su gira mundial tras lanzar ´Échame la culpa´

Fonsi reanuda su gira mundial tras lanzar ´Échame la culpa´

'Love & Dance World Tour' llega este domingo a Moscú y pasará por Riga, Belgrado, Zagreb y París

La actriz Rosa María Sardà devuelve la Cruz de Sant Jordi

La actriz Rosa María Sardà devuelve la Cruz de Sant Jordi

Sardà la entregó junto a una nota que decía que "dadas las circunstancias" no se siente merecedora

Muere Malcolm Young, guitarrista, cofundador y "fuerza motora" de AC/DC

Muere Malcolm Young, guitarrista, cofundador y "fuerza motora" de AC/DC

El músico de la banda australiana, que se retiró en 2014 por una demencia, falleció a los 64 años

CINE


Un momento de ´Dep´
´Deep´, un héroe del fondo del mar

´Deep´, un héroe del fondo del mar

Con un extraordinario colorido, denota a todas luces su condición de espectáculo reservado a los...

Harrison Ford, héroe en la vida real

Harrison Ford, héroe en la vida real

El actor, de 75 años, rescata a una mujer de un accidente de tráfico

´Hacia la luz´, la visión de los ciegos

´Hacia la luz´, la visión de los ciegos

Deja ver la clase y el sentido poético de la autora, que no es poco, pero emitido con cuenta gotas...

´Jupiter´s moon´, sorprendente y discutible

´Jupiter´s moon´, sorprendente y discutible

Los desbordes imaginativos del relato desconcertantes y gratuitos y justifican la reacción del...


´El autor´, cine español a recomendar

´El autor´, cine español a recomendar

Es una cinta sobre las dificultades que engendra escribir cuando los problemas íntimos del no lo...

Jennifer Lawrence, sobre sus fotos robadas: "Sentí que estaba siendo violada"

Jennifer Lawrence, sobre sus fotos robadas: "Sentí que estaba siendo violada"

La actriz se sincera sobre sus sensaciones cuando fue víctima de un hackeo informático hace tres...

Calendario laboral y escolar 2016/2017

Calendario laboral 2017 en Galicia

Calendario Laboral 2017 en Galicia

Aquí tienes a tú disposición todos los días festivos en  Vigo y en Galicia , así como el Calendario escolar 2016/2017 .

 

 

Enlaces recomendados: Premios Cine